Distance and Displacement

Name:_____ Period:____ Date:____

- 1) Describe the difference between distance and displacement.
- 2) Give me one example when a person's distance and displacement would be the same:
- 3) Give me three example when a person's distance and displacement would be different:
 - -
- 4) Susie walks 12 paces north and 26 paces east. What distance did Susie travel and what was her final displacement?
- 5) Jimmy wakes up from a nap on the couch and walks 15m to his refrigerator; he gets some leftovers goes 3 yards to the microwave and heats his dinner up. From the microwave it is a 0.016 km walk back to the couch where he eats his leftover dinner. A) What distance did Jimmy travel? B) What was Jimmy's final displacement? Why?
 A)
- 6) A racecar driver zooms around a circular track of radius 50 m. (hint: circumference = $2\pi r$) a) If the driver goes around the track 4 times, what distance did he travel?
 - b) If the driver goes around the track $5\frac{1}{2}$ times, what was his displacement?
- 7) You have been told that a person has walked 500 m. What can you safely say about the person's final position relative to the starting point?
- 8) A student throws a rock straight upward from shoulder level (1.6 m above the ground). When the rock reaches the ground, what will its displacement be? Prove it to me with a picture.

9) Robbin, roller skating down a marked sidewalk was observed to be at the following positions at the times listed below.

t (s)	x (m)
0.0	10.0
1.0	12.0
2.0	14.0
5.0	20.0
8.0	26.0
10.0	30.0

- a. Plot a position vs. time graph for the skater.
- b. How far from the zero position was Robbin at t = 6s? How do you know?
- c. Write a mathematical expression to describe the line in (a).

d. Was his speed constant over the entire interval? How do you know?

10) In a second trial, the timer started her watch a bit late. The following data were recorded.

t (s)	x (m)
0.0	4.0
2.0	10.0
4.0	16.0
6.0	22.0
8.0	28.0
10.0	34.0

- a. Plot a position vs. time graph for the skater.
- b. How far from the zero position was Robbin at t = 5s? How do you know?
- c. Was her speed constant over the entire interval? How do you know?

d. In the first trial the skater was further along at t = 2s than in the second trial. Does this mean he was skating faster? Explain how you know.