Distance and Displacement

Name: \qquad Period: \qquad Date: \qquad

1) Describe the difference between distance and displacement.
2) Give me one example when a person's distance and displacement would be the same: -
3) Give me three example when a person's distance and displacement would be different:

-
-
-

4) Susie walks 12 paces north and 26 paces east. What distance did Susie travel and what was her final displacement?
5) Jimmy wakes up from a nap on the couch and walks 15 m to his refrigerator; he gets some leftovers goes 3 yards to the microwave and heats his dinner up. From the microwave it is a 0.016 km walk back to the couch where he eats his leftover dinner. A) What distance did Jimmy travel? B) What was Jimmy's final displacement? Why?
A)
B)
6) A racecar driver zooms around a circular track of radius 50 m . (hint: circumference $=2 \pi \mathrm{r}$)
a) If the driver goes around the track 4 times, what distance did he travel?
b) If the driver goes around the track $51 / 2$ times, what was his displacement?
7) You have been told that a person has walked 500 m . What can you safely say about the person's final position relative to the starting point?
8) A student throws a rock straight upward from shoulder level (1.6 m above the ground). When the rock reaches the ground, what will its displacement be? Prove it to me with a picture.
9) Robbin, roller skating down a marked sidewalk was observed to be at the following positions at the times listed below.

$\mathrm{t}(\mathrm{s})$	$\mathrm{x}(\mathrm{m})$
0.0	10.0
1.0	12.0
2.0	14.0
5.0	20.0
8.0	26.0
10.0	30.0

a. Plot a position vs. time graph for the skater.
b. How far from the zero position was Robbin at $\mathrm{t}=6 \mathrm{~s}$? How do you know?
c. Write a mathematical expression to describe the line in (a).
d. Was his speed constant over the entire interval? How do you know?
10) In a second trial, the timer started her watch a bit late. The following data were recorded.

$\mathrm{t}(\mathrm{s})$	$\mathrm{x}(\mathrm{m})$
0.0	4.0
2.0	10.0
4.0	16.0
6.0	22.0
8.0	28.0
10.0	34.0

a. Plot a position vs. time graph for the skater.
b. How far from the zero position was Robbin at $\mathrm{t}=5 \mathrm{~s}$? How do you know?
c. Was her speed constant over the entire interval? How do you know?
d. In the first trial the skater was further along at $t=2 s$ than in the second trial. Does this mean he was skating faster? Explain how you know.

